u-Hydrogen Interactions in STT

Hongyue Duyang

January 25, 2018

Introduction

- Nuclear effect is important.
- ▶ STT (CH2) has abundant hydrogen which is free from nuclear effect.
- ▶ Multiple nuclear target including carbon (graphite) target.
- ► Comparison between H-target and nuclear-target interactions give the best measurement/constraint of nuclear effect.
- Measurement of ν -H interaction is also important to cross-section physics (there has not been any such measurement for 30 years).
- ▶ The question is how to isolate the ν -H interaction and statistically subtract the background.

Method of Double-Transverse Kinematics

LU et al.

- Method developed by X. Lu et al.: Phys. Rev. D 92, no. 5, 051302 (2015)
- ► The hadron momentum projection on the axis transverse to both neutrino and muon (double-transverse) should be balanced without nuclear effect.
- ▶ Nuclear effect causes imbalance from Fermi motion and final-state interactions.
- ▶ The imbalance δp_{TT} gives good separation power between hydrogen and nuclear targets.

STT Study

- ► STT performance:
 - Momentum resolution: 5%.
 - Angular resolution: 2 mrad.
 - ▶ Proton momentum threshold: 200 MeV.
 - \blacktriangleright π^+ momentum threshold: 70 MeV.
- Statistics:
 - ▶ 5 ton CH2, 5 year's running, 80 GeV beam: 3.41 M ν_{μ} -CC (1.88 M resonance) on hydrogen.
- ▶ This talk focus on resonance $\nu_{\mu}p \rightarrow \mu^{-}p\pi^{+}$ in neutrino mode (FHC).
 - Use NuWro as generator.
 - ▶ 100k CH2 event sample (mockdata).
 - ▶ Independent H and C12 samples (using same model as CH2)
 - ▶ Perform a test of signal and background normalization.

Hydrogen Events Selection

- ▶ Left: true δp_{TT} :
 - Hydrogen events peak at exactly zero.
 - ▶ The carbon events are smeared out because of Fermi motion and FSI.
- ▶ Right: reconstructed δp_{TT} (added threshold and smearing).
 - ▶ The reconstructed shape of H events is only detector effect.
 - Good resolution leads to tight cut to reduce background.

Hydrogen Events Selection and Background Normalization

- ▶ Select 3-track $(\mu^- p \pi^+)$ events with $W_{rec} < 1.4$ GeV (RES region).
- ▶ Signal region: $|\delta p_{TT}| < 0.03$ GeV. Background region: $|\delta p_{TT}| > 0.03$ GeV.
- ▶ Normalize signal and background to mockdata.
- ▶ Purity is \sim 77% in signal region.

Selection Efficiency

▶ The efficiency of selecting hydrogen RES events (true W < 1.4 GeV) is $\sim 94\%$, largely independent from incoming neutrino energy.

Model dependence of Background Shape

Prediction by different models for C12

- ▶ The shape of carbon background is model-dependent.
- ▶ It is important to have dedicated carbon target (graphite) to measure the background shape.
- ▶ It also serve as a constraint on nuclear model itself.

Kinematics

Neutrino Energy Reconstruction

- ▶ The hydrogen sample provide a method of reconstructing E_{ν} independent from nuclear effect.
- ▶ The carbon events show a difference between E_{ν}^{rec} and E_{ν}^{true} , which depends on the nuclear model used.
- ▶ Nuclear effect for Ar is even larger than carbon.

Summary

- ▶ Isolating neutrino-hydrogen interaction provides an nuclear-effect-free sample important for disentangling nuclear effect from other uncertainty sources and getting model-independent measurements in DUNE ND.
- ▶ The key features of STT for this study:
 - Abundant hydrogen in CH2 for high statistics.
 - ▶ High-resolution, low-threshold measurement of charged particles greatly reduces the carbon background via transverse kinematics cut.
 - Dedicated carbon target constrains the uncertainty from the remaining background.
- ▶ Other channels are also possible:
 - $\bar{\nu}_{\mu}$ -RES: $\bar{\nu}_{\mu}p \rightarrow \mu^{+}p\pi^{-}$.
 - ▶ Deep-inelastic: similar strategy, use momentums of all final-state particles.
 - $\bar{\nu}_{\mu}$ -QE: if we can measure neutrons (working on this).